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1. Introduction

While the Standard Model (SM) remains a very consistent explanation for nearly all data

pertaining to high energy physics experiments, a few small discrepancies persist. Further-

more, there are theoretical issues that cannot even be addressed within the framework of

the SM alone. Examples include the replication of the fermion families, the naturalness

problem associated with the Higgs scale, charge quantization, the baryon asymmetry in

the universe, the presence of dark matter etc.. Clearly, an answer to such vital questions

may be obtained only in a model much more ambitious than the SM. Candidates for the

role include, amongst others, supersymmetry [1], grand unification [2, 3] (with or without

supersymmetry), family symmetries (gauged or otherwise) and compositeness for quarks

and leptons [4]. In general, each such scenario (with its peculiar strengths and weaknesses)

is associated with an individual set of tell-tale signatures. On the other hand, if the SM

is to be a valid effective low-energy description of such bigger structures, one should be

able to construct, within the ambit of the SM, operators that would encapsulate a class of

remnant effects that could pertain to any of these scenarios. We illustrate this explicitly

in the context of one of the above-mentioned scenarios.

The replication of fermion families suggests the possibility of quark-lepton composite-

ness. In such theories, the fundamental constituents, very often termed preons [5], experi-

ence an hitherto unknown force on account of an asymptotically free but confining gauge

interaction [6]. At a characteristic scale Λ, this interaction would become very strong lead-

ing to bound states (composites) which are to be identified as quarks and leptons. In most

such models [7, 8], quarks and leptons share at least some common constituents. Since the

confining force mediates interactions between such constituents, it stands to reason that
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these, in turn, would lead to interactions between quarks and leptons that go beyond those

existing within the SM. Well below the scale Λ, such interactions would likely be mani-

fested through an effective four fermion contact interaction [9] term that is an invariant

under the SM gauge group. A convenient and general parametrization of such interactions

is given by [4, 10]

L =
4π

Λ2

[

ηij (q̄ γµ Pi q) (l̄ γµ Pj l) + ξij (q̄ Pi q) (¯̀Pj `)
]

, (1.1)

where i, j = L,R and Pi are the chirality projection operators. Note that the lagrangian

of eq. (1.1) is by no means a comprehensive one and similar operators involving the quarks

alone (or the leptons alone) would also exist. However, for our purpose, it would suffice

to consider only eq. (1.1). Within this limited sphere of applicability, the strength of the

interaction may be entirely absorbed in the scale Λ, and the couplings ηij and ξij canonically

normalized to ±1.

While we have sought to motivate eq. (1.1) in the context of compositeness, these are

by no means the only scenarios ones that can give rise to such an effective interaction

lagrangian. As is well known, a four-fermion process mediated by a particle with a mass

significantly higher than the energy transfer can be well approximated by a contact interac-

tion [9] term with a generic form as in eq. (1.1). Examples include theories with extended

gauge sectors, leptoquarks [11], sfermion exchange in a supersymmetric theory with broken

R-parity [12] etc.. In all such cases, on integrating out fields with masses Mi & Λ [13], a

series of such higher-dimensional terms obtain. Those in eq. (1.1) are just the lowest order

(in Λ−1) ones.

Several points are in order here

• In general, integrating out the heavy fields would result in an almost infinite number

of higher-dimensional operators. The terms in eq. (1.1) are just some of the lowest

order (in Λ−1) ones relevant to four-fermion processes.

• For a given model, the couplings ηij and ξij generated by the process of integrating

out heavy fields would be related to each other. Such relations are model-specific and

determined, to a large extent, by the flavour structure of the parent theory. As already

indicated, we shall not consider any such flavour structure, but hold η, ξ = ±1.

• Even a requirement such as SU(2)⊗U(1) invariance for the effective lagrangian would

imply a relation between such terms, but involving different fields. However, we shall

concern ourselves with only those involving qq̄`+`−, noting that the results would be

essentially the same for its SU(2) cousins.

• Low energy observables (for example, meson decays) lead to severe constraints [14]

on several of these couplings and even more so, on their products. Although many

of these bounds were derived in the context of specific ultraviolet completions, it is

easy to see that they are equally applicable to the generic contact interactions.
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• Note that the vector-axial vector (V A) or scalar-psedoscalar (SP ) nature of the η-

and ξ-couplings do not necessarily reflect the spin of the integrated out field that led

to such terms.

Clearly, operators such as these could, in principle, lead to significant phenomenolog-

ical consequences in collider experiments, whether e+e− [18], eP [17] or hadronic. Given

the higher-dimensional nature of L, it is obvious that the consequent effects would be more

pronounced at higher energies. In other words, the fractional deviation over the SM ex-

pectations would be concentrated more at higher invariant masses M [15], with possibly

some nontrivial dependence on the rapidity y as well [16]. For example, composite quarks

and electrons have been proposed as a possible explanation for the high-Q2 anomaly at

HERA [17]. Some of the best constraints on compositeness, for example, came from the

OPAL [18] and CDF [19] experiments. More recently the measurement of the Drell-Yan

cross section [20] at high invariant masses set the most stringent limits on contact interac-

tions of the type given in eq. (1.1). For example, within the V A-type interaction scenario,

the scale Λ is constrained to be Λ & 3.3–6.1 TeV [21, 22], with the bound depending on

the chirality structure of the operator.

As is well known, QCD corrections can alter quite significantly the cross sections at

a hadronic collider. Thus, these may have serious bearing on the discovery potential of

such experiments. Even for as simple a process as Drell-Yan, the leading order (LO)

results seriously underestimate the cross sections. This has led to the incorporation of

the next-to-leading order (NLO) or next-to-leading log (NLL) [24, 25] results in Monte

Carlos codes [24] or event generators such as JETRAD [23]. However, no calculations

exist for the higher order QCD corrections to cross sections mediated by a generic contact

interaction. Consequently, all extant collider studies of contact interaction have either

been based on just the tree level calculations, or, in some cases, have imlicitly assumed

that the higher order corrections are exactly the same as in the SM. Clearly, this is an

unsatisfactory state of affairs and, in this paper, we aim to rectify this by calculating the

next-to-leading order QCD corrections for both the V A-type and the SP -type contact

interactions.

It might be argued that, such theories being nonrenormalizable, any higher-loop cal-

culation is fraught with danger. However, the very structure of such terms (namely the

current-current form of the lagrangian) along with the fact that only one of the currents

comprises coloured fields allows us to reliably calculate QCD corrections. This holds not

only for the specific interaction in question, but also for other theories that satisfy the

abovementioned criterion [26]. On the other hand, were we to attempt to calculate the

NLO electroweak corrections, it is by no means certain that similar levels of reliability or

usefulness could be reached.

The rest of the article is organised as follows. In section 2, we start by outlining the

general methodology and follow it up with the explicit calculation of the NLO corrections

to the differential distribution in the dilepton invariant mass. In the following section, we

consider the rapidity distributions. Section 4 contains our numerical results. And finally,

we summarize in section 5.
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2. NLO corrections

We consider lepton pair production at a hadron collider in the context of a generic contact

interaction as exemplified by eq. (1.1). In other words, the process is

P (p1) + P
(−)

(p2) → l+(l1) + l−(l2) + X(pX) (2.1)

where pi denote the momenta of the incoming hadrons and li those for the outgoing lep-

tons. Similarly, the inclusive hadronic state denoted by X carries momentum pX . The

hadronic cross section is defined in terms of the partonic cross sections convoluted with the

appropriate parton distribution functions fP
a (x) and is given by

2S
dσ

dQ2

P1P2

=
∑

ab=q,q̄,g

∫ 1

0
dx1

∫ 1

0
dx2 fP1

a (x1) fP2
b (x2)

∫ 1

0
dz 2 ŝ

dσab

dQ2
δ(τ − zx1x2) (2.2)

with xi being the fraction of the initial state hadron’s momentum carried by the parton

in question. In other words, the parton momenta ki are given by ki = xi pi. The other

variables are defined as

S ≡ (p1 + p2)
2 ŝ ≡ (k1 + k2)

2 Q2 ≡ (l1 + l2)
2

τ ≡ Q2

S
z ≡ Q2

ŝ
τ ≡ z x1 x2 .

(2.3)

It is convenient to symbolically cast the matrix element for the process as a sum of several

current-current pieces with a “propagator” in between. In other words,

MTotal =
∑

j

J Had
j · Pj · J Lept

j (2.4)

where the dots (·) denote Lorentz index contractions as appropriate and the propagators

Pj are

Pγ =
i

Q2
gµν ≡ gµν P̃γ PZ =

i gµν

Q2 − M2
Z − iMZ ΓZ

≡ gµν P̃Z

PV A =
4π

Λ2
≡ P̃V A PSP =

4π

Λ2
≡ P̃SP .

(2.5)

With this definition, the partonic cross section for the process a(k1) + b(k2) → j(q) +
∑m

i X(pi) is given by

2ŝ
dσab

dQ2
=

1

2π

∑

jj′=γ,Z,V A,SP

∫

dPSm+1 |Mab→jj′ |2 · Pj(Q
2) · P ∗

j′(Q
2) · Ljj′→l l′ , (2.6)

where |Mab→jj′ |2 denotes the square of the hadronic current, and dPSm+1 the (m+1)–body

phase space element, viz.

dPSm+1 =
∫

∏m
i

(

dnpi

(2π)n 2π δ+(p2
i )

)

dnq
(2π)n 2π δ+(q2 − Q2)

×(2π)n δ(n)
(

k1 + k2 − q −
∑m

i pi

)

(2.7)
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where n is the dimension of spacetime and δ+(x) carries its usual meaning. The leptonic

tensor, given by

Ljj′→ l l′ =

∫ 2
∏

i

(

dnli
(2π)n

2π δ+(l2i )

)

(2π)n δ(n)
(

q − l1 − l2

)

|Mjj′→ l+l− |2 , (2.8)

is straightforward to compute and leads to

Ljj′→l l′ =







(

− gµν +
qµqν

Q2

)

Ljj′(Q
2) (j, j′ = γ, Z, V A)

LSP (Q2) (j = j′ = SP )
(2.9)

with

Lγγ(Q2) =
2α

3
Q2, LZZ(Q2) =

α

3

(

(

gR
l

)2
+

(

gL
l

)2
)

Q2

LγZ(Q2) =
−α gV

`

6
Q2, LSP (Q2) = Q2

(2.10)

In the above, α denotes the fine structure constant, while gL,R
a parametrize the couplings

of the left– and right-chiral fermionic fields to the Z, viz.

gV
a =

1

2

(

gR
a + gL

a

)

, gL
a = − ea tan θW , gR

a = −2T 3
a csc 2θW − ea tan θW (2.11)

in terms of the Weinberg angle (θW ) and the electric charge (ea) of the fermion in question.

On substituting for Ljj′→l l′ in eq. (2.6), we have, for the hadronic cross section,

2S
dσP1P2

dQ2
(τ,Q2) =

1

2π

∑

j,j′=γ,Z,V A,SP

P̃j(Q
2) P̃ ∗

j′(Q
2) Ljj′(Q

2) W P1P2
jj′ (τ,Q2) (2.12)

where the hadronic structure function W is defined to be

W P1P2
jj′ (τ,Q2) =

∑

a,b,j,j′

∫ 1

0
dx1

∫ 1

0
dx2 fP1

a (x1) fP2
b (x2)

∫ 1

0
dz δ(τ − zx1x2)∆̄

jj′

ab (z,Q2, ε) .

(2.13)

All that remains is to calculate the bare partonic coefficient function ∆̄:

∆̄jj′

ab (z,Q2, ε) =

∫

dPSm+1 |Mab→jj′ |2 Tjj′(q). (2.14)

where Tjj depends upon the spin of the current in question, viz

Tjj′(q) =
(

− gµν +
qµqν

Q2

)

(j, j′ = γ , ZZ , V A)

TSP (q) = 1
(2.15)

To compute the Q2 distribution of the dilepton pair, one then has to calculate the square

of the hadronic matrix element |Mab→jj′ |2 Tjj′(q), preferably in a suitable frame so as to

render the integrations over the phase space and z easy.

– 5 –
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Note that, the bare partonic coefficient function ∆̄ is a singular object, suffering from

each of ultraviolet, soft and collinear divergences. To handle these, we adopt dimensional

regularisation. The renormalization procedure for the V A-type interactions is quite estab-

lished and may be found, for example, in ref. [26]. Note that, for the SP type interaction,

one-loop corrections results in an extra term — proportional to ln(Q2/µ2) — as compared

to the V A interactions [29]. This, of course, is not unexpected, as contrary to the usual

conserved vector currents, a scalar current is renormalized by QCD interactions. It is easy

to see that this extra term is precisely the one that is absorbed into the bare contact

interaction coupling constant in defining the renormalized coupling ξij.

To the ultraviolet regularized (and renormalized) operator, we must add the contri-

bution from the real emission diagrams (gluon bremsstrahlung as well as the Compton

process), and this exercise leaves us with a quantity that suffers only from collinear singu-

larities. The latter, of course, can be removed through mass factorization. If µF be the

factorization scale, then Drell-Yan coefficient functions, after mass factorization by ∆jj′

ab ,

are related to the bare functions through

∆̄jj′

ab (z,Q2, ε) =
∑

c,d

Γca(z, µ2
F , 1/ε) ⊗ Γdb(z, µ2

F , 1/ε) ⊗ ∆jj′

cd (z,Q2, µ2
F ) (2.16)

with the convolution defined to be

f ⊗ g(x) =

∫ 1

x

dy

y
f(y) g

(

x

y

)

. (2.17)

The kernels Γab are related to the leading order Altarelli-Parisi splitting functions [27]

P
(0)
ab (z) through

Γab(z, µ2
F , 1/ε) = δab δ(1 − z) +

αs(µ
2)

4π ε
Γ

(1)
ab (z, µ2

F )

= δab δ(1 − z) +
as

ε

(

µ2
F

µ2

)ε/2

P
(0)
ab (z)

as =
αs(µ

2)

4π

(2.18)

Expanding eq. (2.16) to order as we have

∆̄jj′

qq̄ = ∆
(0),jj′

qq̄ + as
2

ε
Γ

(1)
qq̄ ⊗ ∆

(0),jj′

qq̄ + as∆
(1),jj′

qq̄

∆̄jj′
qg = as

2

ε
Γ(1)

qg ⊗ ∆(0),jj′
qg + as∆

(1),jj′
qg

(2.19)

thereby leading us to the finite coefficient functions. The physical hadronic cross section

may be obtained by folding these finite coefficient functions with appropriate parton dis-

tribution functions. For the sake of completeness, we present the results below. To begin

with, we denote the renormalized parton-parton fluxes by Hab(x1, x2, µ
2
F ) where

Hqq̄(x1, x2, µ
2
F ) = fP1

q (x1, µ
2
F )fP2

q̄ (x2, µ
2
F ) + fP1

q̄ (x1, µ
2
F )fP2

q (x2, µ
2
F )

Hgq(x1, x2, µ
2
F ) = fP1

g (x1, µ
2
F )

(

fP2
q (x2, µ

2
F ) + fP2

q̄ (x2, µ
2
F )

)

Hqg(x1, x2, µ
2
F ) = Hgq(x2, x1, µ

2
F ) .

(2.20)

– 6 –
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Then, the inclusive differential cross section may be expressed as

2S
dσP1P2

dQ2
(τ,Q2) =

∑

q

∫ 1

0
dx1

∫ 1

0
dx2

∫ 1

0
dz δ(τ − zx1x2)

[FSM+V A,q GSM+V A,q + FSP,q GSP,q]

GSM+V A,q ≡ Hqq̄(x1, x2, µ
2
F )

{

∆
(0),SM
qq̄ (z,Q2, µ2

F ) + as∆
(1),SM
qq̄ (z,Q2, µ2

F )
}

+
{

Hqg(x1, x2, µ
2
F ) + Hgq(x1, x2, µ

2
F )

}

as∆
(1),SM
qg (z, µ2

F )

GSP,q ≡ Hqq̄(x1, x2, µ
2
F )

{

∆
(0),SP
qq̄ (z,Q2, µ2

F ) + as∆
(1),SP
qq̄ (z,Q2, µ2

F )
}

+
{

Hqg(x1, x2, µ
2
F ) + Hgq(x1, x2, µ

2
F )

}

as∆
(1),SP
qg (z, µ2

F )

(2.21)

with the constants FSM+V A,q and FSP
q containing all the dependences on the coupling

constants and propagators, namely,

FSM+V A,q =
4α2

3

[{

e2
q

Q2
− 2 eq gV

l gV
q ZQ

Q2 − M2
Z

Q2

+
1

4

(

(gR
l )2 + (gL

l )2
)(

(gR
q )2 + (gL

q )2
)

ZQ

}

+
2

αΛ2

{

− eq

∑

i,j=L,R

ηij + ZQ(Q2 − M2
Z)

∑

i,j=L,R

ηijg
i
qg

j
l

}

+
Q2

α2Λ4

∑

i,j=L,R

|ηij |2
]

FSP,q =
Q2

Λ4

∑

i,j=L,R

|ξij |2

ZQ ≡ Q2

(Q2 − M2
Z)2 + Γ2

Z M2
Z

(2.22)

For the vector-axial vector couplings, the results for the coefficient functions are anal-

ogous to the case of the SM [26], namely

∆
(0),V A
qq̄ =

2π

N
δ(1 − z)

∆
(1),V A
qq̄ =

8π CF

N

[

{

− 4 + 2ζ(2)
}

δ(1 − z) − (1 + z) ln
(1 − z)2

z
− 2

ln(z)

1 − z
+

{

2
(1−z)+

+ 3
2 δ(1 − z) − (1 + z)

}

ln

(

Q2

µ2
F

)

+ 4

(

ln(1−z)
1−z

)

+

]

∆
(1),V A
q(q̄)g =

2π

N
TF

[

2
{

1 − 2 z + 2 z2
}

ln

(

Q2(1 − z)2

zµ2
F

)

+ 1 + 6 z − 7 z2

]

.

(2.23)

For the scalar-pseudoscalar couplings, on the other hand, the LO coefficient function is

given by

∆
(0),SP
qq̄ =

2π

N
δ(1 − z) (2.24)

– 7 –
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while at the next-to-leading order coefficient functions are

∆
(1),SP
qq̄ =

4π CF

N

[

{

− 2 + 4ζ(2)
}

δ(1 − z) + 2 (1 − z) + 4(1 + z2)

(

ln(1 − z)

1 − z

)

+

+2
1 + z2

(1 − z)+
ln

(

Q2

zµ2
F

)

+ 3 δ(1 − z) ln

(

Q2

µ2
F

)]

,

∆
(1),SP
q(q̄)g =

2π TF

N

[

2
(

1 − 2 z + 2 z2
)

ln

(

Q2(1 − z)2

zµ2
F

)

+ (1 − z)(7z − 3)

]

.

(2.25)

The SU(N) color factors in the above equations are

CF =
N2 − 1

2N
, CA = N, TF =

1

2
. (2.26)

3. Differential cross sections with respect to dilepton rapidity

Having considered, in the previous section, the differential distributions with respect to the

dilepton invariant mass, we now consider a second variable of interest, namely the rapidity

of the pair. The latter can be expressed as

Y =
1

2
log

(

p2 · q
p1 · q

)

=
1

2
log

(

q0
CMH − q3

CMH

q0
CMH + q3

CMH

)

(3.1)

with the second equality valid in the center of mass frame of the hadrons. Thus, the

rapidity distribution may be computed simply by introducing the identity

∫

dY δ

(

Y − 1

2
log

(

p2 · q
p1 · q

))

= 1,

in eq. (2.2). This leads to

2S
dσP1P2

dQ2dY
(τ, Y,Q2) =

1

2π

∑

j,j′=γ,Z,V A,SP

P̃j(Q
2) P̃ ∗

j′(Q
2)Ljj′(Q

2)
dW P1P2

jj′

dY
(τ, Y,Q2). (3.2)

where the hadronic structure functions are given by

dW P1P2
jj′

dY
(τ, Y,Q2) =

∑

a,b,j,j′

∫ 1

0
dx1

∫ 1

0
dx2 fP1

a (x1) fP2
b (x2)

∫ 1

0
dz δ(τ − zx1x2)

×
∫

dPSm+1 |Mab→jj′|2 Tjj′(q) δ

(

Y − 1

2
log

(

p2 · q
p1 · q

)) (3.3)

We start with the leading order case which involves just the calculation of the square of

the matrix element for the process a(k1)+ b(k2) → j(q). The relevant phase space element

corresponds to that for a (0 + 1)-body final state, and

∫

dPS0+1

∫

dzδ

(

Y − 1

2
log

(

p2 · q
p1 · q

))

δ(τ − zx1x2)

=
2π

Q2

∫

dz δ

(

Y − 1

2
log

x1

x2

)

δ(1 − z) δ(τ − zx1x2) .

(3.4)

– 8 –
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The integration over the rest of the variables is simplified, particularly in the context of

the NLO corrections, by effecting a change of variables, namely

(Y, τ) −→ (x0
1, x

0
2) ≡

(√
τ eY ,

√
τ e−Y

)

(3.5)

Then it follows that

2π

Q2

∫

dzδ

(

Y − 1

2
log

(

x1

x2

))

δ(1 − z) δ(τ − zx1x2) |Mab→jj′ |2 Tjj′

=
2π

Q2
δ(x1 − x0

1) δ(x2 − x0
2)

[

|Mab→jj′ |2 Tjj′

]

z = 1

,

(3.6)

rendering the remaining integrals trivial and thereby giving us the Born-level result for the

Y -distribution. Having set the formalism, we may now calculate the next-to-leading-order

contribution to the same. This involves the computation of matrix element squared for the

processes a(k1) + b(k2) → j(q) + c(k). The (1 + 1)-body phase space integration can be

performed in the CM frame of the incoming partons wherein the particle momenta may be

parametrised as

k1 =

√
ŝ

2
(1, 0, . . . , 0, 1)

k2 =

√
ŝ

2
(1, 0, . . . , 0,−1)

−q =

√
ŝ

2
(1 + z, 0, . . . ,−(1 − z) sin θ,−(1 − z) cos θ)

−k =

√
ŝ

2
(1 − z, 0, . . . , (1 − z) sin θ, (1 − z) cos θ)

Writing cos θ = 2y − 1, the two delta functions reduce to

δ

(

Y − 1

2
log

p2 · q
p1 · q

)

= δ

(

Y − 1

2
log

x1(1 − y(1 − z))

x2(z + y(1 − z))

)

=
2x1x2x

0
1x

0
2(x1x2 + x0

1x
0
2)

(x1x2 − x0
1x

0
2)(x1x0

2 + x0
1x2)2

δ(y − y∗)

δ(τ − zx1x2) =
1

x1 x2
δ(z − z∗)

(3.7)

where,

y∗ =
x2x

0
2(x1 + x0

1)(x1 − x0
1)

(x1x2 − x0
1x

0
2)(x1x

0
2 + x0

1x2)
, z∗ =

x0
1x

0
2

x1x2
(3.8)

The above relations can be used to obtain
∫

dPS1+1

∫

dz δ

(

Y − 1

2
log

p2 · q
p1 · q

)

δ(τ − zx1x2) |Mab→jj′ |2 Tjj′

=
1

8π

(

Q2

4π

)ε/2
1

Γ(1 + ε/2)

2x0
1x

0
2(x1x2 + x0

1x
0
2)

x1x2(x1x0
2 + x0

1x2)2

[

|Mab→jj′ |2Tjj′

]

y=y∗,z=z∗

×
(

(x1 − x0
1)(x2 − x0

2)(x1 + x0
1)(x2 + x0

2)

(x1x0
2 + x0

1x2)2

)ε/2

(3.9)
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To obtain the contribution to the Y distribution from real gluon emissions, we substitute

eq. (3.9) in eq. (3.2). Similarly, the virtual corrections can be obtained using eq. (3.4)

with oneloop corrected matrix elements. The soft singularities cancel after adding the real

emission contributions and virtual corrections to the Born process. The remaining collinear

divergences are removed by mass factorization, or, in other words, by replacing the bare

parton distribution with the renormalized ones using the Alteralli-Parisi kernels as follows

fP
a (z) =

∑

b

Γ−1
ab ⊗ fP

b (z, µ2
F ), (3.10)

which implies

fP
q (z) = fP

q (z, µ2
F ) − as

ε

[

Γ(1)
qq ⊗ fP

q (z, µ2
F ) + Γ(1)

qg ⊗ fP
g (z, µ2

F )
]

fP
q̄ (z) = fP

q̄ (z, µ2
F ) − as

ε

[

Γ
(1)
q̄q̄ ⊗ fP

q̄ (z, µ2
F ) + Γ

(1)
q̄g ⊗ fP

g (z, µ2
F )

]

fP
g (z) = fP

g (z, µ2
F ) − as nf

ε

[

Γ(1)
gq ⊗ fP

q (z, µ2
F ) + Γ

(1)
gq̄ ⊗ fq̄(z, µ2

F )

+ Γ
(1)
gg ⊗ fP

g (z, µ2
F )

]

.

(3.11)

Thus, we finally have, for the one-loop corrected distributions in the dilepton pair rapidity,

2S
dσ

dQ2dY
(τ, Y,Q2) =

∑

i=q

FSM+V A,q

[

DSM
qq̄ (x0

1, x
0
2, µ

2
F )

+DSM
qg (x0

1, x
0
2, µ

2
F ) + DSM

gq (x0
1, x

0
2, µ

2
F )

]

+
∑

i=q

FSP,q

[

DSP
qq̄ (x0

1, x
0
2, µ

2
F )

+DSP
qg (x0

1, x
0
2, µ

2
F ) + DSP

gq (x0
1, x

0
2, µ

2
F )

]

(3.12)

with the constants FSM+V A,q and FSP,q as in eq. (2.22). The functions D can be split

conveniently into the Born-approximation piece and the NLO corrections, viz

Dη
ab(x

0
1, x

0
2, µ

2
F ) = D

η,(0)
ab (x0

1, x
0
2, µ

2
F ) + asD

η,(1)
ab (x0

1, x
0
2, µ

2
F ) (η = SM,V A, SP ). (3.13)

Once again, the analytical expressions for the V A-type contact interactions are the same as

those obtained within the SM and can be found in ref. [26]. As for the SP -type interactions,

while the leading-order expression is simple

D
SP,(0)
qq̄ (x0

1, x
0
2, µ

2
F ) =

π

N
Hqq̄(x

0
1, x

0
2, µ

2
F ) (3.14)

the NLO results are more complicated. Defining, for convenience, certain constants

κa1 = ln
2Q2 (1 − x0

2) (x1 − x0
1)

µ2
F (x1 + x0

1)x0
2

κb1 = ln
Q2 (1 − x0

2) (x1 − x0
1)

µ2
F x0

1 x0
2

κc1 = ln
2x0

1

x1 + x0
1

κ12 = ln
(1 − x0

1) (1 − x0
2)

x0
1 x0

2

(3.15)
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we have

D
SP,(1)
qq̄ (x0

1, x
0
2, µ

2
F ) =

(

2π CF

N

)

{

ϕqq̄
0 +

∫

dx1 ϕqq̄
1 +

∫

dx1dx2 ϕqq̄
2

}

+
(

1 ↔ 2
)

ϕqq̄
0 =

1

2
Hqq̄(x

0
1, x

0
2, µ

2
F )

(

− 2 + κ2
12 + 6 ζ(2) + (3 + 2κ12) ln

Q2

µ2
F

)

ϕqq̄
1 =

2κb1

x1 − x0
1

Hqq̄,1(x1, x
0
2, µ

2
F )

+Hqq̄(x1, x
0
2, µ

2
F )

(

1 − κa1

x1
+

2κc1

x1 − x0
1

− 1 + κa1

x2
1

x0
1

)

ϕqq̄
2 =

Hqq̄,12(x1, x2, µ
2
F )

(x1 − x0
1)(x2 − x0

2)
− x2 + x0

2

(x1 − x0
1)x2

2

Hqq̄,1(x1, x2, µ
2
F )

+
Hqq̄(x1, x2, µ

2
F )

2x2
1 x2

2

(

(x1 + x0
1) (x2 + x0

2) +
x2

1x
2
2 + x02

1 x02

2

(x1 + x0
1) (x2 + x0

2)

)

(3.16)

and

D
SP,(1)
gq (x0

1, x
0
2, µ

2
F ) =

2π Tf

N

∫

dx1

x3
1

×
[

ϕgq̄
1 +

∫

dx2

{

ϕgq̄
2 − ϕgq̄

3 Hgq(x1,x2,µ2
F

)

x2
2 (x2+x0

2) (x1x0
2+x2x0

1)
3

}

]

ϕgq̄
1 = Hgq(x1, x

0
2, µ

2
F )

(

2x0
1(x1 − x0

1) + κa1

(

x02

1 + (x1 − x0
1)

2
)

)

ϕgq̄
2 =

Hgq,2(x1, x2, µ
2
F )

x2 − x0
2

(

x02

1 + (x1 − x0
1)

2
)

ϕgq̄
3 = −x5

1x
2
2x

03

2 + x4
1x

0
1x

2
2x

02

2 (3x2 + 4x0
2)

+x3
1x

02

1 x2x
0
2(3x

3
2 + 2x03

2 ) + 2x05

1 x2
2(x

3
2 + 2x2

2x
0
2 + 2x2x

02

2 + 2x03

2 )

+2x1x
04

1 x2(−x4
2 + x3

2x
0
2 + 4x2

2x
02

2 + 2x2x
03

2 + 2x04

2 )

+x2
1x

03

1 (x5
2 − 4x4

2x
0
2 − 4x3

2x
02

2 + 2x2
2x

03

2 + 2x2x
04

2 + 2x05

2 )

(3.17)

with

DSP,1
qg (x0

1, x
0
2, µ

2
F ) = DSP,1

gq (x0
1, x

0
2, µ

2
F )|(1↔2) (3.18)

and we have used the following notations,

Hab,12(x1, x2, µ
2
F ) = Hab(x1, x2, µ

2
F ) − Hab(x

0
1, x2, µ

2
F ) − Hab(x1, x

0
2, µ

2
F )

+Hab(x
0
1, x

0
2, µ

2
F )

Hab,1(x1, x2, µ
2
F ) = Hab(x1, x2, µ

2
F ) − Hab(x

0
1, x2, µ

2
F )

Hab,2(x1, x2, µ
2
F ) = Hab(x1, x2, µ

2
F ) − Hab(x1, x

0
2, µ

2
F ).

(3.19)
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4. Results and discussion

We now present numerical results relevant for the Run II of the Tevatron (
√

S = 1.96 TeV)

as well as for the LHC (
√

S = 14 TeV). Although our goal, namely the calculation of the

NLO QCD corrections, would be quite independent of the value of the contact interaction

scale Λ, for definiteness we choose Λ = 6 (20)TeV for the Tevatron (LHC). Furthermore,

in presenting our results, we shall consider only one of the couplings ηq
AB and ξq

AB to be

non-zero and of unit strength.

For the sake of convenience, we parametrize the cross section as

σ = σSM + σintf + ση2 (for the VA case)

σ = σSM + σξ2 (for the SP case)
(4.1)

and similarly for the differential cross sections. This has the advantage in that the total

cross sections, for an arbitrary value of Λ can be easily reconstructed.

4.1 The invariant mass distribution for the dilepton pair

In figure 1, we present the invariant mass distributions corresponding to the V A case.

Note that the ση2 piece (and, similarly, the σξ2 piece) depends only on the identity of the

quark q taking part in the contact interaction and is independent of the chirality structure

of the coupling. The interference term, on the other hand, does depend on the chirality

structure as figure 1(a) amply demonstrates. As for σSM, the rapid decrease in cross

section with M is reflective of both the s−1 fall of the parton-level cross section as well

as the rapid fall in parton distribution functions at higher momentum fractions. That the

interference terms do not fall as fast is a consequence of the higher dimensional nature of

the contact interaction lagrangian. This, naturally, is even more evident for the ση2 (σξ2)

piece. Consequently, at high M values, the contact interaction contribution dominates over

the SM piece. For the LHC, this dominance occurs at a larger M value as compared to the

case of the Tevatron precisely because we have chosen to work with a much larger value of Λ

for the former environment. And, expectedly, for identical couplings, the cross section due

to a uū initial state dominates that originating from a dd̄ initial state. In figure 1, we have

chosen to limit ourselves only to these two initial states as the cross sections corresponding

to the heavier quarks would be suppressed even further (note though that the experimental

bounds on Λ is relaxed too for such cases).

We should clarify, at this stage, that, in calculating the NLO cross sections shown in

figure 1, we have made a specific choice of the renormalization scale µR and the factorization

scale µF , namely,

µR = µF = M ≡
√

Q2 .

Postponing, until later, a discussion of the dependence on the scale choice, we may define

now a invariant mass-dependent K-factor, namely

Kq
M =

[

dσLO(M)

dM

]−1[

dσNLO(M)

dM

]

, (4.2)
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Figure 1: The differential inclusive dilepton production cross-sections (at NLO) for the contact

interaction terms. In each case, only one coupling (η, ξ) is assumed to be non-zero and of unit

size. Also shown, for comparison, is the total SM contribution. The top and bottom panels refer

to the Tevatron (
√

S = 1.96TeV and Λ = 6 TeV) and the LHC (
√

S = 14TeV and Λ = 20TeV)

respectively. The right and left panels refer respectively to the pure contact interaction term and

the interference with the SM.

where q refers to the identity of the quark, and the LO (NLO) cross sections are computed

by convoluting the corresponding parton-level cross sections with the LO (NLO) parton

distribution functions. In figure 2, we exhibit the variation of KM with M for different

choices of q.

As derived in the previous section, and as already evinced in figure 1, the fractional

correction depends only on the spin structure of the vertex, and not on the chirality. Thus,

for a given quark, the K-factor would depend on whether the interaction is of SP or V A

type, but within each class, the chirality structure (namely whether it is LL, RR, LR

or RL type) is quite irrelevant. The last statement also implies that, for the V A-type

interaction, the K-factor would be exactly the same as in the SM , as far as the particular

quark initial state is concerned. Numerically, this feature is displayed in figure 2. Of course,
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Figure 2: The K-factors for the differential (in dilepton invariant mass) cross-section for (a) the

Tevatron Run II and (b) the LHC. For the contact interactions, the K-factors are independent of

the chirality structure of the operators, but depend on whether they are of the V A or the SP type.

the K-factor does depend on the identity of q. As can be expected, Ku
M (V A) and Kd

M (V A)

are relatively close to each other and, in turn, to KM (SM). In fact, to a large measure,

KM (SM) is but the weighted average of the other two, with the relative strengths being

determined by the quark fluxes. That these K-factors fall monotonically with M for the

case of the Tevatron and not so for the LHC is understandable in the light of the fact

that, the former is a pp machine, while the latter is a pp one. As for Ks
M (V A), the steep

rise at large M values is but a reflection of the dominance of the Compton-like subprocess

(sg → `+`−s and s̄g → `+`−s̄) owing to the larger flux of gluons as compared to s/s̄,

especially for large momentum fractions.

The results for the SP -type interactions are qualitatively similar, though quantitatively

the K-factors are significantly larger than those for the V A-type interaction (or the SM).

The numerical differences are but consequences of the the structures of the respective

matrix elements. On closer inspection, Kq
M (SP ), for a given M , turns out to be the same

as that for resonance production of a scalar/pseudoscalar of mass M [29].

4.2 The rapidity distributions

We now turn to the distribution in a different kinematical variable, namely Y , the rapidity

of the lepton pair1. However, rather than look at dσ/dY itself, we shall rather consider

on d2σ/dM dY , for this allows us to accentuate the effect of the contact interactions by

concentrating on a suitable M range.

At the LO, the variable Y is just a measure of the boost of the partonic center of mass

with respect to the laboratory frame. At the NLO, one has to consider the effect of the

initial state radiation as well. In either case, it is easy to see that d2σ/dM dY (and, hence,

dσ/dY ) is an even function of Y . In figure 3, we exhibit the dependence of d2σ/dM dY on

Y , for a fixed value of M . As expected, for a large enough value of the latter, the effect of

1This should be distinguished from the rapidity of an individual lepton.
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Figure 3: As in figure1, but for the double differential (in rapidity Y and mass M) distribution

instead.

the contact interaction is clearly discernible and especially for the central rapidity region.

Note that the contact interaction cross sections are significantly flatter in Y than the SM

contribution. Once again, this is a reflection of the structure of the new physics matrix

element as compared to that due to γ/Z exchange.

Analogous to KM defined in the previous subsection, one may now define a Y -depen-

dent K-factor of the form defined as

KY ≡
[

dσLO(M,Y )

dM dY

]−1[

dσNLO(M,Y )

dM dY

]

, (4.3)

and we plot this quantity as a function of Y in figure 4. The results are quite reminiscent

of those for KM (as displayed in figure 2). It is noteworthy that, for the LHC, Ks
Y shows a

large upward swing at large Y , whereas Ks
M had seemed better behaved. The reason is not

difficult to fathom. For the range of M spanned in figure 2(b), the cross section integral

typically samples relatively moderate values of the Bjorken-x as compared to the higher-

M`` regime for the Tevatron case (figure 2(a)). On the other hand, a phase space point

such as (M = 700GeV, |Y | = 2.5) necessarily pushes one to larger momentum fractions
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Figure 4: As in figure2, but for the double differential (in rapidity Y and mass M) distribution

instead.

for the partons and thus, once again, it is the ratio of the strange-quark flux to that of the

gluon that causes the upward turn in figure 4(b).

4.3 The choice of scale

Until now, we have chosen each of the factorization scale µF (relevant to both the LO as

well as NLO calculations) and the renormalization scale µR (relevant only for the NLO

case) to be the same as the dilepton invariant mass M . As is well known, this choice is

arbitrary and there is no theoretical guideline for making such a choice. Maintaining, for

reasons of simplicity, µR = µF , we now examine the dependence of our calculations on this

choice. To quantify the scale dependence of our result, we define ratios RM and RY

RI
M (µF ) ≡

[

dσI(M,µF = M)

dM

]−1 [

dσI(M,µF )

dM

]

,

RI
Y (µF ) ≡

[

dσI(M,Y, µF = M)

dM dY

]−1 [

dσI(M,Y, µF )

dM dY

]

,

(4.4)

where I = LO, NLO. A value of RI
M,Y (µF ) close to unity would then signify a low sensitivity

to the choice of scale and hence a more robust result.

In figure 5, we display the above ratios for the case of the LHC and the V A interactions.

Note that the variation of the cross section with the factorization scale is relatively small.

Furthermore, the variation reduces significantly as one goes from the LO to the NLO case.

This immediately points to the increased robustness of the prediction on inclusion of the

corrections, and lends hope that the remaining scale ambiguity can, presumably, be reduced

by adding still higher order corrections. Note that, at the leading order, these ratios are

independent of the dynamics and reflect only the effect of the choice of the factorization

scale on the parton densities. In other words,

RLO
M (SP ) = RLO

M (V A), RLO
Y (SP ) = RLO

Y (V A) .
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Figure 5: The K-factors for the differential (in dilepton invariant mass) cross-section for (a) the

Tevatron Run II and (b) the LHC. For the contact interactions, the K-factors are independent of

the chirality structure of the operators, but depend on whether they are of the V A or the SP type.

At the next-to-leading order, the dynamics does play a role. However, the differences

between the R-ratios for the SP and V A cases are too small to be noticeable on the scale

of figure 5. The results are similar for the case of the Tevatron as well.

5. Conclusions

To summarize, we have performed a systematic calculation of the next-to-leading order

QCD corrections for the Drell-Yan process in theories with contact interactions. Contrary

to naive expectations, we demonstrate explicitly that the QCD corrections are meaningful

and reliable in the sense that no undetermined parameters need be introduced.

We have analyzed both the invariant mass distribution and the rapidity distributions

for the dilepton pair at either of the Tevatron and the LHC. The enhancements over the LO

expectations are found to be quite significant. The corresponding K-factors are presented

in a form suitable for use in experimental analyzes.
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For the V A-type interactions, the analytical structure of the corrections are similar

to those for the SM. However, a significant dependence on the flavour structure is found

and needs to be carefully accounted for in obtaining any experimental bounds. For the

SP -type interaction, not only are the analytical results quite different, but the consequent

K-factors are typically larger than those within the SM.

Finally, we have investigated the sensitivity of our results to both the factorization

and renormalization scales. As expected, we find such dependences to be greatly reduced

for the case of the NLO results as compared to that for the LO case. This indicates the

robustness of the calculations.
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